Задача № 1 :
График линейной функции отсекает от второй координатной четверти равнобедренный прямоугольный треугольник с длинами катетов, равными 3. Найдите эту функцию.
Решение :
Данный график образует с осью абсцисс такой же угол в 45,
как и биссектриса первого и третьего координатных углов.
Значит, ее угловой коэффициент равен 1.
Поскольку при x = 0 значение функции равно 3, то искомая функция есть y = x + 3.
Задача 2 :
Банк ОГОГО меняет рубли на тугрики по 3000 рублей за тугрик, и еще берет 7000 рублей за право обмена независимо от меняемой суммы.
Банк ЙОХОХО берет за тугрик 3020 рублей, а за право обмена берет 1 тугрик (тоже независимо от меняемой суммы).
Турист установил, что ему все равно, в каком из банков менять деньги. Какую сумму он собираетс менять?
Решение :
Если у туриста было X рублей, то в банке ОГОГО он получит за них (X – 7000) / 3000 тугриков, а в банке ЙОХОХО X / 3020 – 1 тугриков. Решая уравнение ( x – 7000 ) / 3000 = X / 3020 – 1, получаем X = 604000 (руб.).
Задача 3 :
Из чисел A, B и C одно положительно, одно отрицательно и одно равно 0.
Известно, что A = B (B – C).
Какое из чисел положительно, какое отрицательно и какое равно 0? Почему?
Решение :
Если A = 0, то либо B = 0, либо B – C = 0. Ни то, ни другое невозможно.
Поэтому A не 0. Если B = 0, то и A = 0. Это тоже невозможно.
Поэтому B не 0. Следовательно, C = 0, и равенство из условия задачи можно переписать в виде A = B(B-0) = B2.
Отсюда следует, что B < 0. (- умн. на - даст +) Значит, B отрицательно, а A – положительно.
Задача 4 :
ABC – прямоугольный треугольник с гипотенузой AB. На прямой AB по обе стороны от гипотенузы отложены отрезки AK = AC и BM = BC. Найдите угол KCM.
Решение :
По теореме о внешнем угле треугольника сумма углов CKA и KCA равна углу CAB.
Поскольку треугольник CAK – равнобедренный, KCA = CKA = CAB / 2. Аналогично, BCM = BMC = CBA / 2.
Таким образом, KCM = KCA + ACB + BCM = ACB + ( CAB + CBA) / 2 = 90 + 45 = 135.
Задача 5 :
Можно ли расположить в кружочках на рисунке натуральные числа от 1 до 11 так,
чтобы суммы трех чисел на каждом из пяти выходящих из центра отрезков равнялись одному и тому же числу A,
а суммы пяти чисел в вершинах внутреннего и внешнего пятиугольников равнялись одному и тому же числу B?
Если да, то как? Если нет, то почему?
Решение :
Покажем, что расставить числа требуемым образом нельзя.
Допустим, это удалось. Обозначим через X число, стоящее в центральном кружочке.
Все остальные числа стоят в кружочках, образующих два пятиугольника.
Поэтому X + 2B = 1 + ......+ 11 = 66, откуда X = 66 – 2B. Значит, число X должно быть четным.
Теперь сложим все суммы чисел, стоящих на выходящих из центра отрезках.
Получится 5A. При этом число X будет сосчитано пять раз, а все остальные – по одному разу.
Поэтому 5A = 4X + (1 + ........... + 11) = 4X + 66 (*). Значит, число 4X + 66 должно делиться на 5.
Этому условию среди чисел от 1 до 11 удовлетворяют только числа 1, 6 и 11, и при этом только число 6 четно.
Следовательно, X = 6. Подставляя найденное значение X в уравнение (*), находим, что A = 18.
Стало быть, на каждом из пяти выходящих из центра отрезков сумма двух чисел, стоящих там вместе с числом X, должна равняться 18 – 6 = 12.
Получается, что на одном отрезке должны стоять числа 1 и 11, 2 и 10, 3 и 9, 4 и 8, 5 и 7.
Заметим, что три из пяти перечисленных пар состоят из нечетных чисел, а две – из четных.
Поэтому в вершинах каждого из двух пятиугольников должны стоять три нечетных и два четных числа.
Это означает, что число B должно быть нечетным.
Но из доказанного выше равенства X = 66 – 2B при X = 6 получаем B = 30. Противоречие.