Задачи повышенной сложности по математике 4 класс.
Задание 1:
Один токарь за смену изготовил 32 детали.
Другой токарь, работая с той же производительностью, изготовил 24 детали.
Сколько часов работал первый токарь, если известно, что второй токарь работал на 2 часа меньше, чем первый?
Решение:
Пусть первый токарь работал x часов. Тогда второй токарь работал (x - 2) часов.
Первый токарь за час изготавливал (32/x) деталей, а второй токарь (24/(x - 2)).
По условию задачи оба токаря работали с одинаковой производительностью.
Это значит, что за 1 час они изготавливали одинаковое число деталей,
поэтому мы можем записать и решить уравнение:
30/x = 24/(x - 2);
32*(x - 2) = 24 * x;
32x - 64 = 24x;
8x = 64;
x = 8.
Ответ: первый токарь работал 8 часов.
Задание 2:
Сложная задача по математике для 4 класса:
Из двух городов по реке одновременно выплыли навстречу друг другу две моторные лодки.
Скорость первой лодки 15км/ч, второй лодки 35км/ч.
Первая лодка двигалась по течению реки. Скорость течения реки 5км/ч.
Через сколько часов лодки встретились, если расстояние между городами 250км?
Решение:
Пусть до встречи лодок первая проплыла x км. Тогда вторая лодка проплыла (250 - x) км.
Учитывая скорость течения реки, скорость первой лодки 15 + 5 = 20км/ч.
Соответственно, скорость второй лодки 35 - 5 = 30км/ч.
Очевидно, что время в пути до встречи одинаково, поэтому можно записать уравнение:
x/20 = (250 - x)/30;
x * 30 = 20 * (250 - x);
30x = 5000 - 20x;
50x = 5000;
x = 100км.
Первая лодка до встречи со второй прошла 100км. Рассчитаем время:
t = x/20 = 100/20 = 5ч.
Для проверки мы можем рассчитать время второй лодки:
t = x/20 = (250 - x)/30 = 150/30 = 5ч.
Ответ: лодки встретились через 5 часов.