Е Г Э по математике



ЕГЭ 2017 по математике задание 14 с решением


Демонстрационный вариант ЕГЭ 2017 по математике

ЕГЭ по математике 2017 в формате pdf     Базовый уровень     |     Профильный уровень

Задания для подготовки к ЕГЭ по математике: базовый и профильный уровень с ответами и решением.

Математика:     базовый   |   профильный 1-12   |   13   |   14   |   15   |   16   |   17   |   18   |   19   |       Главная




ЕГЭ 2017 по математике       задание 14

ЕГЭ 2017 по математике профильный уровень задание 14 с решением




     ЕГЭ 2017 по математике       задание 14

Решите:

Ребро куба равно корень из 6.
Найдите расстояние между диагональю куба и диагональю любой из его граней.
    



     ЕГЭ 2017 по математике       задание 14

В правильной треугольной пирамиде АВСS с основанием АВС известны ребра: АВ= 5 корней из 3, SC= 13.
Найти угол, образованный плоскостью основания и прямой, проходящей через середину ребер АS и ВС.

Решение:

1. Поскольку SABC - правильная пирамида, то ABC - равносторонний треугольник, а остальные грани - равные между собой равнобедренные треугольники.
То есть все стороны основания равны 5 sqrt(3), а все боковые ребра равны 13.

2. Пусть D - середина BC, E - середина AS, SH - высота, опущенная из точки S к основанию пирамиды, EP - высота, опущенная из точки E к основанию пирамиды.

3. Найдем AD из прямоугольного треугольника CAD по теореме Пифагора. Получится 15/2 = 7.5.

4. Поскольку пирамида правильная, точка H - это точка пересечения высот/медиан/биссектрис треугольника ABC, а значит, делит AD в отношении 2:1 (AH=2 AD).

5. Найдем SH из прямоугольного треугольника ASH. AH=AD 2/3 = 5, AS = 13, по теореме Пифагора SH = sqrt(132-52) = 12.

6. Треугольники AEP и ASH оба прямоугольные и имеют общий угол A, следовательно, подобные. По условию, AE = AS/2, значит, и AP = AH/2, и EP = SH/2.

7. Осталось рассмотреть прямоугольный треугольник EDP (нас как раз интересует угол EDP).
EP = SH/2 = 6;
DP = AD 2/3 = 5;

Тангенс угла EDP = EP/DP = 6/5,
Угол EDP = arctg(6/5)

Ответ:     arctg(6/5)





Олимпиада по математике (решение, ответы) 11 класс :             1 вариант    |       2 вариант    |       3 вариант